
International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 56

A Framework for Implementation of Load Balance Access in

Computational (Server) Environment

Osah, Stella1, E. O. Bennett2 & O. E. Taylor3

Department of Computer Science,

Rivers State University,

Port Harcourt,

Nigeria

Stellaattah12@gmail.com1, bennett.okoni@ust.edu.ng2,

taylor.onate@ust.edu.ng3

Abstract

The computational (server) environment has been faced with several challenges during

operations of the cooperating computing systems with adverse outcome. The resultant effect is

the gradual slowdown of the performance of the system in attending to user requests, drop in

response time, hang and crash issues among others. Some of these issues occur when the server

is no longer responding to users request or the server becomes irresponsive to user actions;

all these cause the system to fail. Deadlock during computation is also an aspect of the

challenges caused on the server as different users compete for resources held by other users.

This research presents a framework for implementation of load balance access in a

computational (server) environment. This is achieved by identifying factors leading to load

imbalance, determining the degree of imbalance, developing a framework that will reduce

imbalance. Computing an average neighborhood load balancing using a 10% trigger on the

server while checking for situations when the server is overloaded, under loaded and loaded.

The average neighborhood was used to achieve this and the system was implemented with

visual C#. The system achieved an efficient load balancing process using the average

neighborhood load balancing method.

Keywords: Load Balancing, Computational Environment, Average Neighbourhood Algorithm.

1. Introduction

In a disseminated computing environment, the term Load Balancing (LB) refers to a process

of visibly and intuitively sharing computational resources e.g. network bandwidth, CPU cycles,

memory threads, storage space, etc. by routing access requests to certain resources from users

or computers at a particular time to specific systems (Wang, 2015). In real world, a workstation

user may not use the machine always, however, he might need more than just the machine

during active working time. It’s important to know that some resources may be heavily loaded,

while others are lying idle. Improving on performance is one of the most important issues in

circulated systems. The overall performance of the system can often be enhanced to a suitable

level just by distributing the workload among the machines. (Kris et al 2015).

 How user’s job is being processed is an issue of major concern as there is always lots of jobs

in queue within the computing situation leaving the systems in a complex scenario. The truth

is that every user often desires his jobs processed and finished as quickly as possible, and in

events where the computing systems are over loaded, the chances of possible bottlenecks are

on the rise while system resources are being allocated. Whenever Load Balancing is

implemented within a computing environment, the major aim has always been to deliver high

availability of resources (Aditya, 2015). However, the current approaches used in load

balancing has too much overhead to contend with, therefore cannot withstand impasses when

mailto:bennett.okoni@ust.edu.ng

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 57

too much access demand to same resource are coming in per second and limited resource is

available to service the request in queue (Zhao, 2013). This paper presents a framework for

implementation of load balance access in a computational environment.

2. Related Literature

In a server environment, load balancing is a framework that is used to share workload evenly

across nodes. When used in a computing environment, load balancing guarantees improved

performance as well greater user satisfaction and resource usage ratio, ensuring that a server

(node) is not overloaded. The outcome enhances overall performance of the machine. When

properly implemented, load balancing can help in optimal utilization of the available server

resources, hence, minimizes resource consumption rate. It can as well be used as a means of

implementing fail-over, allowing for system scalability, get rid of bottlenecks and over-

provisioning, leading to reduced response time, etc. (Chana, 2012).

Load balancing is very common in web and database access, Dynamic Name Server (DNS)

and name resolution, storages, network bandwidth consumption, and packet routing. With no

load balancing in place, chances are very high users will experience serious delays, processing

timeouts and possible sustained high latency. Load balancing relates with networking by

allowing the deployment of redundant servers to enable spread of communication traffic from

services, like Web, DNS, etc. on a pool of servers (Chaczko, 2011). In a situation where two

or more distributed computing machines are made to communicate to each other via a network,

chances of resource sharing are very high and is feature that will be desired. Additionally, there

will be a benefit of performance improvement for the servers as a result of sharing their

computational power (CPU), apart from the traditional data, I/O sharing. Load balancing serves

as a mechanism which allows job requests to be moved from one server to the other inside the

distributed system, this creating a much faster job servicing like minimizing job response time

and optimizing resource usage. Several findings have revealed that load balancing between

computing devices within distributed system improves the overall performance hugely with

corresponding improvement in resource utilization. There are two kinds of load balancing

algorithms, namely, static and dynamic.

Load balancing policies in static algorithms are largely centered around information on average

system’s behavior, while transfer decisions are based on the real current state of the system.

The static load balancing patterns rely on prior understanding of applications and statistical

data of the system to reach its decisions. Static load balancing algorithm determines the

performance of each CPU at the start of execution, afterwards, depending on their levels of

performance, computing task is allotted by the controlling (master) CPU. Other CPUs (slaves)

then compute the task assigned them and send their results back to the controller. On the other

side, static load balancing scheme has its own problem, and that is, once a processor has been

selected to handle a task, that decision is final. The selection cannot be altered when a process

is being executed to allow for modifications on how the system is loaded (Rajguru, 2000).

However, in dynamic load balancing algorithms, the load is allocated among the processors

during the execution time. The controller allots new processes to the slaves using newly gotten

information. Dynamic load balancing clearly has the edge over its static counterpart in terms

of adjustment. The constant monitoring makes use of CPU cycles, so, care has to be taken by

way of when it should be called, because the redistribution introduces additional CPU overhead

at runtime (Wang, 2015).

3. Methodology

To successfully achieve the task of load balancing in a computational environment,

constructive research and Object-Oriented Analysis and Design was used for this paper.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 58

Constructive research method is an important research procedure in computer science. This

approach solves problem through the construction or use of models, diagrams, etc. This

research technique is commonly used in operations analysis, mathematics, technical sciences,

and clinical medicine and in operations research (Eero et al, 1993). On the other hand, Object

– Oriented Analysis and Design when applied leads to object oriented disintegration and is

flexible to change with greater level of confidence. Its model of interaction represents

interesting entity of the system being modeled. It uses the unified modeling language to

represent these models (Booch et al, 2007), (Roebuch, 2011).

3.1 Load Balancer Structure

Figure 1 Architecture components for AvNA

This is the system architecture showing were the Average Neighbourhood Algorithm (AvNA)

is implemented in the server environment. The signal goes through the input module to the

algorithm dispatcher (where AvNA resides). After balancing, the multiplexer and de-

multiplexer will convert the signal to a digital base to ensure proper workload balancing is

deployed/ distributed to the content base routing before allocation to a particular client/node.

4. Proposed Implementation of Load Balance Access in Computational (Server)

Environment

This system consists of three models: the client, the server and the load balancer. The clients

are the users of the system while the server is the location from where the client retrieves

information. The load balancer interfaces between the client and the server directing client

required information to the available server. This load balancer uses the Average

Neighbourhood Algorithm (AvNA) to balance the load coming into the server. The proposed

AvNA is inspired by the honey bee load balancing algorithm that switches jobs from

overloaded Virtual Machines (VM) taking the decision of submitting them to one of the

underloaded VMs which is regarded as the destination of the honey bee.

4.1 Average Neighbourhood Algorithm

The proposed framework for load balancing (LB) uses AvNA to distribute workload among

available servers to avoid a scenario of servers being overloaded (over-utilized) and under-

loaded (under-utilized). It calculates the initial work load and divides by the number of

available servers in the computational environment and multiplies the result by the average

percentage of the workload. This is achieved when the initial workload is greater than the

trigger point of 10% then the LB Algorithm (_AvNA) will be triggered for the load to be

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 59

balanced and the balanced average workload will be redistributed among the available servers.

Table 1 shows the notations used in the LB algorithm

Table 1. The notations used in the Average Neighbourhood Load Balancing Algorithm

S/N SYMBOL NOTATION

1 Virtual Machines: (VM)

Average nodes. Nodes operating within a running

server environment.

2 host (i) {server} The host number i: Number of the overloaded load

3 PThost(i) Processing time of host(i)

4 PTVM(j) Processing time of Virtual Machine (j)

5 TLhost(i) Total length of tasks submitted to host(i)

6 TLVM(j) Total length of tasks submitted to VM(j)

7 VM (j) The VM number i

8 Sv The server

9 PTAvg_host

The computational environment consists of a set of servers or virtual machines which also

contains load balancer and is responsible to find suitable host and machine to allocate task

through the AvNA. The following equations were used:

 Average processing time

PTAvg_host =
1

𝑛
∑𝑛

𝑖=1 PThost(i) (1)

 Percentage Load Balancing

%ALB =
𝑆𝑣−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑜𝑎𝑑

𝐿𝑜𝑎𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
 𝑥 100% (2)

Average Neighbourhood Algorithm

Calculate Average PT of VMs

Ave PT (VMs) = PThost(i)

If PT (VMj) > PThost (i) // VM is Overloaded

// calculated degree of imbalance and redistribute workload {length}

 TLVM(J) - TLhost(i)

If PT(VMj) < PT(i) // VM is Underloaded

// Calculate Degree of imbalance

TLhost(i) - TLMv(j) ///The degree of Imbalance factor
 If PT(VMj) = PT(i) // VM = Balanced

The AvNA presents detailed explanation of the system, when the load is overloaded,

underloaded and balanced.

The load is said to be overloaded when the processing time (PT) scheduled by the virtual

machine is less than the processing time of the host system in the computing environment.

When the processing time of the virtual machine is greater than the processing time of the host

machine the server is underloaded. To calculate the degree of imbalance, the total amount of

workload in the host system is subtracted from the virtual machine in the server. The load

becomes underloaded when the processing time of the virtual machine is less than the

processing time of host system. While, when the load is imbalance, the total length of the task

submitted in host (i) is subtracted from the total length of the task in the virtual machine (vm).

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 60

The balances the system workload on the server by calculating the average percentage of the

workload in the server environment. It calculates the workload to be balanced by checking the

neighbors load before redistribution of workload: if the server is overloaded or underloaded

that means the incoming load is greater or lesser than the threshold value of trigger. This

algorithm can only calculate and redistribute when the load is 10% greater than or less than the

average workload within the cooperating computing nodes.

5. Results and Evaluation

The simulation result shows the distribution stage of the system, the initial volume of the

system, the percentage at which the Average Neighbourhood Algorithm will be triggered to

start the balancing and the actual balancing of the system. The system considered 4 and 8 server

scenario and figure 3 and 4 show the output of the system.

Figure 3: Output result for 4 servers after load balancing

Figure 4: Output result for 8 servers after load balancing

Table 1 Result table for 4 - servers

No of servers Sv1 Sv2 Sv3 Sv4

Initial loads 1026 4676 1038 10386

 1032 5283 1027 12879

 1030 4179 1031 12244

 1033 2644 1029 13590

%ALB 1.23 1.03 1.23 1.26

Actual LAB 1267 1481 3359 3979

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 61

Table 2 Result table for 8 - servers

No of server Sv1 Sv2 Sv3 Sv4 Sv5 Sv6 Sv7 Sv8

Initial loads 1030 4270 1032 2771 11154 5973 1029 1027

 1038 3311 1031 2991 10568 4291 1035 1027

 1031 3132 1029 2746 10116 4589 1029 1035

 1028 2156 1038 3667 13159 4827 1034 1025

%ALB 1.28 1.17 1.28 1.35 1.34 1.27 1.28 1.28

Actual LAB 2673 1134 3351 1745 3624 1638 3423 3417

Graphical Representation

The graph shows the time and the load representation of load balancing system.

Figure 5: Degree of Load Balancing Response Time

Figure 5 is the average response time varies among different simulation; from the graphical

illustration, the time required for each load shows a clear separation from each other.

Figure 6: Server against time elapsed

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 62

Figure 6 shows number of servers against the time it takes to complete a load balancing process.

It is clear that, the number of servers also affects the time the system takes to balance or

redistribute workload among cooperating nodes in the system.

6. Discussion of Results

From the results observed, computing environment with systems numbering 4 and 8 servers

where selected and the average neighborhood algorithm was executed during the system run.

Figure 3 and figure 4 shows the output results for 4 and 8 servers after load balancing with sv1,

sv2, sv3 and sv4 showing the initial distributed workload in figure 3 and LB1, LB2, LB3, LB4

showing the output of the balanced load.

In figure 4, the servers sv1, sv2, sv3, sv4, sv5, sv6, sv7, and sv8 show automatically generated

initial loads for each node and the corresponding balanced load is shown in servers LB1 to LB8

respectively.

From figure 3 and 4, the initial workload generated shows the unbalanced state of the servers.

After applying the load balancing algorithm, the results showing on both figures presents an

evenly distributed loads among the servers.

Table 1 and Table 2 are the summary of the simulation results for 4 servers and 8 servers at

different execution time. Figure 5 represents the load and time evaluation which gives the

degree of load balancing response time.

Figure 6 depicts the number of servers and time taken to complete the redistribution process.

Conclusion

Load balance access removes the overloaded workload and provides equal and approximate

service in multi access / distributed computing environment. The load balancing method can

be used for the better utilization and understanding of load balancing systems. This research

observes that load balancing is important issue in a computing environment as it balances the

storage and service demands in data center etc. It also helps in answering the question of how

to achieve minimum overhead on the server system and maximum resource utilization,

throughput, how to reduce traffic and get better performance of the system.

References

Boettcher, S., & Percus, A. G. (1999). Extremal optimization: Methods derived from co-

evolution. Paper presented at the Proceedings of the 1st Annual Conference on Genetic

and Evolutionary Computation-Volume 1.

Chana, Y. and N. J. Navimipour (2012). "Online knowledge sharing mechanisms: a systematic

review of the state of the art literature and recommendations for future research."

Information Systems Frontiers: 1-21.

Chaczko, A., et al. (2011). "Virtual machine provisioning through satellite communications in

federated Cloud environments." Future Generation Computer Systems 28(1): 85-93.

Charband, Y., & Navimipour, N. J. (2016). Online knowledge sharing mechanisms: a

systematic review of the state of the art literature and recommendations for future

research. Information Systems Frontiers, 18(6), 1131-1151.

Daraghmi, E. Y., & Yuan, S.-M. (2015). A small world based overlay network for improving

dynamic load-balancing. Journal of Systems and Software, 107, 187-203.

Eero, D. C. (2000). "Cloud computing: A value creation model." Computer Standards &

Interfaces 38: 72- 77.

Gao, R., & Wu, J. (2015). Dynamic load balancing strategy for cloud computing with ant

colony optimization. Future Internet, 7(4), 465-483.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 5 No. 1 2019

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 63

Gopinath, P. G., & Vasudevan, S. K. (2015). An in-depth analysis and study of Load balancing

techniques in the cloud computing environment. Procedia Computer Science, 50, 427-

432.

Krishna, P. V. (2013). Honey bee behavior inspired load balancing of tasks in cloud computing

environments. Applied Soft Computing, 13(5), 2292-2303.

Kumar, S., & Dutta, K. (2016). Securing mobile ad hoc networks: Challenges and solutions.

International Journal of Handheld Computing Research (IJHCR), 7(1), 26-76.

Milani, A. S., & Navimipour, N. J. (2016). Load balancing mechanisms and techniques in the

cloud environments: Systematic literature review and future trends. Journal of Network

and Computer Applications, 71, 86-98.

Ren, X., Lin, R., & Zou, H. (2011). A dynamic load balancing strategy for cloud computing

platform based on exponential smoothing forecast. Paper presented at the 2011 IEEE

International Conference on Cloud Computing and Intelligence Systems.

Samanta, P., & Mondal, R. K. (2016). Load balancing through arranging task with completion

time. International Journal Of Grid And Distributed Computing, 9(5), 273-282.

Wang, S.-C., Yan, K.-Q., Wang, S.-S., & Chen, C.-W. (2011). A three-phases scheduling in a

hierarchical cloud computing network. Paper presented at the 2011 Third International

Conference on Communications and Mobile Computing.

Zhang, J., Huang, H., & Wang, X. (2016). Resource provision algorithms in cloud computing:

A survey. Journal of Network and Computer Applications, 64, 23-42.

